

Security + Access Controls

Author: Joseph Lee

Email: joseph@ripplesoftware.ca

Mobile: 778-725-3206

General Concepts

Identification

Users claim who they are

- Users may claim an identity with a username, or smart-card
- When using biometric identification systems the use a device such as fingerprint scanner or facial recognition

Authentication

Users prove their identity (passwords, PIN number, OTP, biometric scan)

Authorization

 Access is granted to a specific resource based on the identity that has been authenticated

Accounting

- · Access and usage is logged
- Accounting data can be used for controlling, monitoring, non-repudiation, statistics, and billing

AAA authentication, authorization, accounting (auditing)

- The elements of a comprehensive access management system
- Common AAA authentication protocols include:
 - RADIUS / DIAMETER
 - XTACACS / TACACS+
 - Kerberos
 - CHAP
 - o PPP
 - LDAP

Authentication Factors

Multi-Factor

Using more than one factor in the authentication process

Context Aware Authentication

- Incorporates extra information such as geolocation, time of day, device MAC address, etc, to improve security
- Factors include:

- Something you know (password, PIN)
- Something you have (smart-card, phone, USB token, 2nd factor)
- Something you are (fingerprint, biometric, 3rd factor)
- Somewhere you are (geolocation, MAC address of computer)
- Something you do (touch gestures on a touch screen, keyboard dynamics, aka behaviour biometrics)

Password complexity

- Uppercase (26 A-Z)
- Lowercase (26 a-z)
- Numbers (10 0-9)
- Special characters (32 printable characters)

Password Policy

- A password policy may enforce min/max password age, min/max password length, complexity requirements, and whether to use reversible encryption, or not depending on whether the passwords needs to be determined from it's stored encrypted state
- Key-space = C^N
 - C is the number of possible characters, N is the length of the password
 - Key-space is the number of possible combinations of passwords/keys
- Password expiry
 - Changing the password prevents breached passwords from being used
- Password recovery
 - Changing the password to a temporary password which will then require being changed prevents the admin from knowing the password
- Password history / reuse
 - Because passwords should not be reused, a password history can prevent password reuse by a user
- Account lockout threshold and account lockout duration can prevent brute forcing passwords
- Change default passwords
 - All hardware appliance / software default passwords should be changed

Group Policy

- Allows creation of an access policy for a group and applying it to several users
- Group Policy Object (GPO)
 - Controls what users can and cannot do on a computer system
 - For example, to enforce a password complexity policy that prevents users from choosing an overly simple password, to allow or prevent unidentified users from remote computers to connect to a network share, to block access or restrict access to certain folders

Domain Controller

 A domain controller is a server that responds to authentication requests and verifies users on computer networks

- A domain is a concept introduced in Windows NT whereby a user may be granted access to a number of computer resources with the use of a single username and password combination
- In Windows NT 4, one DC serves as the primary domain controller (PDC)
- Others, if they exist, are usually a backup domain controller (BDC)

Active Directory Domain Services (AD DS)

- Is a directory service Microsoft has developed for Windows networks
- Included in Windows Server OS
- Windows 2000 and later versions introduced Active Directory
- Active Directory makes it easier for administrators to manage and deploy network changes and policies such as password changes, and group permissions
- Active Directory Server
- Active Directory Service
- Organizational Units (OU)
- Active Directory Users and Computers (ADUC)
- **Security principal** is used to authenticate an identity and is what handles what permissions an identity has

Access Security Hardware

- Smart-card (ISO/IEC 14443) Use embedded certificates
- Proximity card (two types "A" and "B", with different communications protocols)
- CAC Common access card (Used by US Department of Defence ID cards)
- PIV Personal Identity Verification Card (Used by US federal agencies)
- Hardware token / Key FOB
- Fingerprint scanner
- Retina scanner
- Iris scanner More common then a retina scanner
- Voice recognition Does not provide good accuracy
- Facial recognition

Access Security Software Open Standards

- HOTP HMAC based one time password
 - Client token device or application and server both use a secret key and incrementing counter which are hashed together
 - The hashed result is then further reduced to a few characters and displayed to the user to be entered as authentication code
 - The counter values are incremented on the device / application when a hash is created, and on the server after a valid authentication has been submitted
 - The validation window is a range of counter values for which the server will accept a response from a client and consider it a valid authentication
- TOTP time based one time password
 - \circ Uses **timestamp** as a factor to generate the **OTP**
 - Google Authenticator is an example of TOTP

 The TOTP changes often and each one has a limited lifespan sometimes only a few seconds

False rejection rate (FRR or type I error) / False acceptance rate (FAR or type II error)

- Both are percentages of failure
- Devices can be adjusted for sensitivity / threshold of error
- Cross-over Error Rate (CER) is the point where FAR and FRR cross
- Lower CER means that a system is more accurate
- CER is often used to calibrate biometric systems to acceptable levels of error

Accounts

Credential Management

 All the processes and technologies involved in provisioning, maintaining, and managing user accounts and credentials

Types of Accounts

- End-user accounts
 - Regular user accounts
- Administrator / Root
 - Super privileged account
- Privileged accounts
 - Additional rights such as admin accounts
- Guest accounts
 - Limited temporary access accounts
- Service accounts
 - Accounts for application services such as Apache, MySQL, etc.

Common Account Policies

- Standardized account names
 - Use a common standard for account names such as for email addresses, workstation accounts, etc.
 - For example firstname.lastname@domain.com
- Limit admin account usage
 - Don't use admin accounts for day-to-day business functions. Require admins to escalate their privileges when needed
- Prohibit shared accounts / mingling accounts
 - Sharing accounts should only be allowed if absolutely necessary such as when systems can never be logged off/on
- Multiple accounts
 - Administrators and privileged users may have more than one account to prevent using an account with high level privileges all the time
- Disablement policies
 - Have policies in place to disable and backup, archive, and delete accounts for employees ASAP (termination, vacation)
 - It's a good idea to automate and schedule disablement policies

whenever possible to avoid account sprawl

Account recovery

 Maintain the ability to enable disabled accounts and recover deleted / archived accounts

Time of day restrictions

Limit times when users can logon

Location based policies

Limit the user logins by geolocation such as GPS / GeolP

Account maintenance

 Manual or automated account maintenance can report user's logins and automatically delete unused accounts

Credential management

 Browsers, operating systems, and password managers can store and automatically supply credentials for websites, services or resources

Least privilege

 Never give more permissions to a user account than is necessary for them to do their job

Time-of-day restrictions

 Make sure that access is only available during the time that users should be doing their job

Access Control Models

Confidentiality Model

Emphasizes the need to protect against unauthorized access

Integrity Model

• Emphasizes the need to protect all data from unauthorized modification

RoleBAC Role-based Access Control

- Uses employee roles to manage authorization to resources such as by adding users to groups (group based access control)
- These can be assigned based on job function, department and hierarchy (executive, manager, team member, administrator, etc.)

RuleBAC Rule-based Access Control

- Most common example is for routers and firewalls
- Use ACL (access control list) to block traffic or route VLAN traffic based on the physical port on the router
- ruleBAC can be dynamic (Fail2ban)
- Account lockout can block users who fail login attempts too many times

DAC Discretionary Access Control

- Most common example is file permissions on Windows (NTFS) and Linux systems. File/folder owners can set permissions for groups and general users
- Microsoft systems use SID (security identifiers) to identify users and groups
- All files/folders have DACL (discretionary access control list) specifying who

- can access it
- The DACL is a list of ACE (access control entities) that include permission levels such as read, modify, full-control, etc.

MAC Mandatory Access Control

- Security labels / sensitivity labels on both subjects (users) and objects (files/folders)
- When labels match, the system can grant a user access to an object
- Labels are in lattice and can be complex relationships
- Generally, these labels include hierarchal levels and dataset classifications
- Users can be granted access to resources based primarily on their security level, but must be granted access to each dataset individually
- Administrators assign access levels based on security professionals and security auditing
- SELinux uses MAC for access control

ABAC Attribute-based Access Control

- Uses **attributes included in policies** to grant access when the system detects match in policy
- Common in SDN (software defined networks)
- ABAC uses policy statements that include subject, object, action, and environment
- ABAC can enforce both DAC and MAC models simultaneously
- The environment is everything outside the context of subject, and object attributes
- See NIST SP 800-162 Guide to Attribute Based Access Control

Physical Access Control

Mantrap

- Prevent people from tailgating by forcing people to go one at a time
- These can be turnstiles, or other physical infrastructure
- Can also include cards/scanners or embedded services.

Bollards

 Prevents attackers from driving a vehicle through a window or entry point in order to gain access

Security Guards Locks / cages / safes

Account Policies

Provisioning and Deprovisioning

- Creating and assigning accounts, and then removing access, disabling, archiving and eventually deleting
- Account Policies
 - Credential management, group policy, password policies

Account Lockout

 Process to lock an account that is being compromised, attacked or violates policies

On-boarding / Off-boarding

- May include many accounts, certificates, and devices
- During off-boarding these things should be disabled, archived or deleted

User audits and reviews

 Periodically audit the access to systems and resources to avoid permission bloat / privilege creep, etc.

Recertification

An audit of permissions to sensitive systems and data

Continuous monitoring

- A form of auditing that tracks logs and other documentation to ensure user actions are not in violation of access control policies
- This ensure that systems and data are being accessed properly and by authorized personnel
- The monitoring can be **automated** or **manual**

Information Classification

Public data

 Available to anyone, press release, web-sites, product information, brochures

Confidential data

 Is to be secret to a specific group of people. Salary data, contract data, etc.

Proprietary data

Trade secrets, patents, trademarks, copyrights

Private data

• PII and PHI of employees or customers are both examples of private data

Network Authentication Services

Centralized authentication

Uses a unified system for authentication between different networks, or applications

Decentralized authentication

• Do not trust each other's credential database or authentication mechanisms

Kerberos

- Network authentication mechanism for Windows Active Directory and some Unix environments known as realms
- Developed at MIT, Kerberos provides mutual authentication to prevent MITM and uses tickets to help prevent replay attacks
- Kerberos uses a Key Distribution Center (KDC) to issue Ticket Granting Tickets (TGT) which are used by clients to generate session tokens

- which are used to **access services** or resources
- Tickets are used for authentication when accessing system resources
- Kerberos v5 requires all systems to be time synchronized within 5
 minutes of each other and timestamps tickets to ensure they expire at the
 correct time as specified
- Kerberos uses a database of users such as Active Directory in the authentication / authorization process
- Kerberos uses symmetric key cryptography to prevent unauthorized access and ensure confidentiality

NTLM New Technology LAN Manager

- A suite of protocols that provide authentication, integrity, and confidentiality within Windows
- NTLM uses message digest hashing to verify identity
- NTLM v1 uses MD4 and is not recommended
- NTLM v2 is a challenge response protocol
- Creates an HMAC-MD5 of username, logon hostname, the user's password, current time, and more
- NTLM2 Session improves NTLM v2 by adding mutual identification between the client and server
- Although NTLM does not send passwords in cleartext in transit, it is not considered very secure and Kerberos is more secure form of authentication

LDAP / LDAPS Lightweight Directory Access Protocol

- Is an extension of X.500 standard used in Novell and MS Exchange Server
- Active Directory is based on and uses the LDAP format and Unix realms use LDAP
- LDAPS is LDAP Secure and uses SSL/TLS on port 686 instead of 389
- LDAP string: LDAP://CN=Name,CN=Users,DC=Domain,DC=com
 - ∘ CN=Name -> CN is short for common name
 - CN=Users -> CN is short for container
 - DC=Domain -> domain component
 - DC=com -> second domain component

SSO Single Sign On

- Allows logon to multiple systems / resources simultaneously
- Has the potential to increase security by giving the user only one password to remember instead of possibly hundreds
- Can reduce the burden of multiple account management systems
- Requires a SSO policy server to authenticate credentials
- Can be used with hardware token such as smart-card
- Can use 2FA or MFA to increase security
- Some SSO protocols include:
 - **OAuth** Facebook login, Google Login, and other social network logins
 - Kerberos Once authenticated can get tickets for network services
 - SAML Protocol for web portal SSO
- Some SSO implementations include:

- Accounts & SSO (Nokia, Intel, Canonical) since
- Active Directory Federation Services (Microsoft) since 2003 in Windows Server 2003
- Bitium (Google) since 2012

Transitive Trust / Circle of trust

- Creates an indirect trust relationship between systems
- If A trusts B and B trusts C, then A will also trust C
- Reduces the number of trusts that are needed for authentication interoperability between different domains
- Non-transitive trust is a trust that will not extend past the domains it was created with
- With LDAP domains use transitive trust for SSO

Federation / FIM Federated Identity Management

- Subscribers use the same authentication credentials between multiple enterprises to obtain access to network resources
- Prevents forcing users to create separate accounts for multiple domains
- Allows enterprises to share resources such as community cloud
- Is a multi-environment authentication system with a centralized identity management database
- Used for access to different network resources, operating systems on a network, or websites
- Windows Active Directory supports federated login system
- Common FIM protocols include SAML, OpenID, OAuth, and Shibboleth

Shibboleth

- Is an example of a federated identity management system with SSO
- Uses SAML
- Is an Open Source software project that began in 2000

SAML Security Assertion Markup Language

- Is an XML data format used for SSO on web-browsers
- If organizations have transitive trust, SAML can be used to enable federated identity management
- SAML has three roles (principal, identity provider, service provider)
- Principal
 - Typically a user who is either logging on or registering
- Identity provider
 - Maintains the central identity data
- Service provider
 - Provides the login / access services to principals
- SAML does not provide identical authorization across federations or systems

Oauth and OpenID Connect

- An open standard for authorization to provide secure access to protected resources
- Used for cross-site login of websites (Facebook login, etc.) and also for

payment systems such as between PayPal and vendor
 OpenID Connect works with Oauth 2.0 and provides 3rd party authentication services