

Security + Hardware Security

Author: Joseph Lee

Email: joseph@ripplesoftware.ca

Mobile: 778-725-3206

General Terms

BIOS Basic Input / Output System

• A physical microchip includes software with instructions for the computer to start, run some basic checks, locates the boot sector, the operating system

UEFI Unified Extensible Firmware Interface

Newer version of BIOS

UAV unmanned arial vehicle

Flying drones can be autonomous or human controlled

UPS Uninterrupted Power Source

- An alternate or power generator in case of grid power failure
- Uninterruptible power supply keeps systems running on battery during power failure

Backups

 Data backups to prevent data loss in case of corruption, deletion, application failure, or human error

HVAC (heating ventilation air conditioning)

- Cooling systems keep hardware within recommended operating temperatures and reduce likeliness of system failure
- HVAC system's primary benefit is to increase availability
- Also HVAC system can be vulnerable to attacks since they have embedded systems in them

General Security Concepts

Server redundancy

 Using failover clusters (redundant servers that become operational when mail server fails)

Load balancing

Used to balance the data request load in order to increase availability

Site redundancy

Hot site available 24/7

- Warm site between hot/warm site
- Cold site can be prepared when needed

Electrical Security Threats

ESD Electrostatic discharge

 Wrist-straps and anti-static bags can prevent electrostatic from damaging computer parts

EMP Electromagnetic Pulse

• Short burst of electromagnetic energy can come from wide assortment of sources and cause damage to computer equipment

EMI Electromagnetic Interference

- Comes from sources like motors, power lines, lights, and can interfere with network signals
- Using shielded cable and faraday cages may become necessary when building physical network infrastructure in areas that have high EMI

Network Security Hardware Devices

RAS Remote access server

- A type of server that provides a suite of services to remotely connected users over a network or the Internet
- It operates as a **remote gateway** or **central server** that connects remote users with an organization's internal local area network (LAN)

Bastion host

- A high security server maintained to protect systems on the LAN from outside attack via access over a public facing IP
- Often hosts only a single application and includes HIDS or HIPS
- Usually a server that provides access to highly sensitive data, for example, a VPN that provides access to an internal network
- Instances that sit within your public subnet and are typically accessed using SSH or RDP

Network Tap

A device that you can insert on a network path to capture and analyze packets

SED Self Encrypting Drive

- A HDD or SSD with an **embedded controller** to encrypt the drive's contents
- The drive appears the same as a normal hard-drive but can be configured to erase its contents when connected to an untrusted system

UTM Unified Threat Management Device

- Hardware security appliance that operates in the DMZ and provides services:
 - Virus protection
 - Non-transparent proxy (modifies and inspects data)
 - Network Intrusion Detection System NIDS
 - Firewall
 - Anti-spam protection (mail-gateway)
 - DDOS mitigation
 - Content inspection

TPM Trusted Platform Module

- Works with system boot firmware (such as UEFI) to provide baseline of security and trust
- Keeps hard-drives locked until the system completes a verification and authentication process
- Supports the secure boot and remote attestation / (attestation) processes
- Comes with a unique RSA private key burned into it which is used for asymmetric encryption
- TPM provides hardware root of trust which ensures low-level security during system boot

HSM Hardware Security Module

- A security device that can generate, manage and store cryptographic keys and perform CPU intensive cryptographic processes more efficiently than standard hardware
- High-performance HSMs are network attached external devices
- Lower-performance HSM devices are expansion cards or plug into computer ports

RAID Redundant Array of Inexpensive Disks

- RAID-0 (stripping)
 - Writing data across 2 or more drives for performance increase
- RAID-1 (mirroring)
 - \circ $\,$ Writing data to 2 or more drives at the same time for redundancy
- RAID-5
 - 3 or more drives that use parity to ensure redundancy as well as performance increase
- RAID-6
 - Requires minimum of 4 or more disks that use double distributed parity and can allow 2 drives to fail and still operate
- RAID-10 (or 1+0)
 - Combination of RAID-0 and RAID-1 (A stripe of two mirrored arrays)
- RAID-01 (or 0+1)
 - Similar to RAID 10 (A mirror of two striped arrays)

Failover Cluster / High availability cluster / distributive allocation

Increases availability

Active - Passive

• One sever is active and the other is waiting for failure to be used

Active - Active

 Both servers in the cluster are actively being used unless one server is non-functional or requires maintenance

Scalability

- Refers to the ability to serve more clients
- Adding additional hardware resources can increase availability

Load balancer

- For high availability (typically in the DMZ)
- Load balancers can direct traffic using round-robin or by detecting load on servers

• Round-robin

 Requests to a server are rotated through a list of servers in the server farm

Affinity / Session affinity / Sticky session

 Matches the session to a sever and continues to direct traffic from that session to a single particular server

Elasticity

Ability to scale up and down depending on need

Access Control Hardware

SMAP Supervisor Mode Access Prevention

- A feature of some CPU implementations
- Allows supervisor mode programs to optionally set user-space memory mappings so that access to those mappings from supervisor mode will cause a trap
- Makes it harder for malicious programs to "trick" the kernel into using instructions or data from a user-space program
- Supervisor code usually has full read and write access to user-space memory mappings
- Privilege escalation exploits, which operate by causing the kernel to access user-space memory when it did not intend to